Waste to worth for green highways

To reduce costs and the carbon footprint in the construction of highways, the road sector is witnessing a material transition turning industrial, municipal, farm waste into construction materials

Soumya Chatterjee

Soumya Chatterjee
letters@bindistatimes.com
NeW DELHE With more than 6.6 million
kilometres of roads, India already has
the second-largest road network in the
world after the United States—and
more are being built. The government
is a state of the control of the control of the control
is a state of the control of the control
is a the country grows economically.
However, building and maintaining
infrastructure on such a massive seale
has a significant environmental costfrom quarrying stone aggregates to ne
control of the control of the control
in the con

Roads from industrial waste in Raigarh, Charlstagerh at two-kilometre, six-lane road leading to the Jindai Inaligarh, at two-kilometre, six-lane road leading to the Jindai Sixel Plaint-one of Indais Sargest integrated steef facilities—is being rebuilt using steel slag, a by-product of steek-ported by CRRI, Is among Indais most davanced industrial waste utilisation efforts and follows successful pilots in Lazira and Mundra ports in Gujarat. The Hazira port troad—built in May 2022 using processed slag from Arcelor-Mittal Nippon Steel—showed that steel sing can replace antural aggregates in sing can replace antural aggregate strated with the steel slag for quarried stone can cut aggregate extraction by nearly 40%, and divert over 22 million tonness of slag generated annually from landfills into productive use.

generated annually from landfills into productive use.

"Processed steel slag aggregates can be utilised as a 100% substitute for natural aggregates in all the layers of bituminous and cement concrete pavement," said Satish Pandey, senior principal scientist at CSIR-CRRI. "The Raigarh stretch will not only validate earlier indings but also help fine-tune design and construction parameters suitable for Indian conditions."

Countries such as Japan and the Netherlands have already standardised the use of steel slag across multiple road layers, showing how industrial waste can become a vital building resource.

What goes into India's green roads

MATERIAL	WASTE SOURCE	KEY BENEFITS / PERFORMANCE	WHERE IMPLEMENTED
Steel slag	Steelmaking by-product	High stiffness, load-bearing; replaces natural aggregates	Raigarh (Chhattisgarh), Hazira & Mundra (Gujarat)
Plastic-modified bitumen	Shredded waste plastic (1.5-2%)	Flexible, crack-resistant, long- lasting surface	Over 1.2 lakh km across India (MoRTH, 2023)
Bio-bitumen (green bitumen)	Crop residue, lignin	Cuts GHG emissions by 50–70%; reduces oil import	CRRI–Praj pilots in Delhi, Pune, Raigarh
Geocells	Mixed municipal waste plastics	Reinforces embankments, uses unsegregated plastic	Delhi pilot (1,280 m²); now in Leh & Lahaul-Spiti

struction is the use of goocells—a hon-eycomb-shaped grid made primarily from recycled plastics. These struc-tures, when filled with soil or aggre-gates, improve load distribution and make roads sturtider, especially in areas with weak subgrades. CRH and Bharat Petroleum Corpo-ration Limited (BPCL) have jointly par-arity of the properties of the properties of the the DND-Faridabad-KMP Expressway. The pilot used about 20–25 connes of waste plastic, including multilayered and end-of-life mixed plastic, to create a durable base layer. Following its suc-cess. CRH has expanded the use of geo-cess. CRH has expanded the of geo-cess. CRH has expanded the of geo-cess. CRH has expanded the office of the conventional materials are scarce. "Recycled geocells reduce the need for virgin material while simultane-ously providing a solution for manag-ing urban waste," said Ambika Behl, principal scientist at CRH. We don't in the provided of the provided of the provided of the provided or unsorted plastic can be turned into geocells, making it highly practical for

Farm to road
Alongside plastic and industrial waste, the CRRI is working with industry partners on developing bio-bitumen made from crop residues such as paddy straw. This can replace up to 30% of petroleum bitumen, lowering both carbon emissions and import dependency—helping address the Issue of stuth-

ble burning while contributing to circular economy goals.

lar economy goals.

Private sector laps up green shift
Even codification is under way, service produced by the section of the

6,000 MT each. "Our focus is on producing bitumen that is both high-per-formance and sustainable," said Rahul Garg, founder and CEO of Moglix.

6,000 MT each. "Our focus is on producing bitumen that is both high-performance and sustainable," said shall Garg, founder and CEO of Moglix.

Codes and green standards statistics of the Supert-stress the urgency for codification and standardisation to enable wider adoption of such materials CRRI, along with the IRC, is developing of the CRRIST of the Supert Stress the urgency for food Concrete Parish Teamwork for food Concrete CRRIST of the Supert Stress the urgency for codification and standardising and correct parish Teamwork and the Supert Stress the urgency for codification of such materials CRRI, along with the IRC, is developing the CRRIST of the Supert Stress the University of th

in December 2024 with 12 sustainability